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Coherent x-ray scattering and dynamics of fluctuations in smecti@A and crystal-B films:
Continuous model
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We present a theoretical study of the dynamic displacement-displacement and intensity-ifftensdier-
ent soft x-ray scatteringcorrelations in SmA as well as CB free-standing films. The work is based on a
continuous hydrodynamic model that allows one to calculate efficiently the dynamic correlation functions and
considerably simplifies earlier analyses of finite-size and surface effects i f8ms. The model is extended
to Cr-B films. We show that despite the crystalline order, theBGilm is a strongly fluctuating system, which
is due to an abnormally small shear elastic constant. An easy-shear approximation is developed to describe the
fluctuations in the CB phase. We predict nonmonotonic behavior of the intensity-intensity correlation func-
tion in both SmA and CrB films. The analysis can be applied to either coherent x-ray or conventional laser
dynamic light scattering experiments.

PACS numbes): 61.30.Cz, 83.70.Jr

[. INTRODUCTION drodynamic theory using either a set of linear equaticiis
crete modelor an ordinary differential equation with bound-
Although the idea of studying dynamical processes byary conditions (continuous mod¢l There have been a
means of scattering is not new and conventional light scathumber of theoretical studies of single-time correlation func-
tering has been widely used since lasers became availabléons based on both a discrete moffgg] and a continuous
coherent x-ray dynamic scattering studies have been carriggodel[6,9]. Excluding very narrow regions close to inter-
out only recently. In particular, there have been a number ofaces, these models yield the same correlation function. The

recent theoretical and experimental dynamical studies ofontinuous model was successfully used to fit scattering data
layer fluctuations in free-standing films made of smestic- [10] and extract the surface tension and elastic constants. It

has been shown that the profile of mean-square displacement

liquid crystals[1—-3]. A smectic liquid crystal consists of a luctuati dicted by th dels pl il role |
stack of two-dimensional liquid layers. Mean-square thermal uctuations predicted by these models plays a crucial role in
ayer-by-layer crystallization in free-standing smectic films

undulations of the layers diverge logarithmically with thegll]
size of the system due to the Landau-Peierls instability. The™ " o 0 o o0 alation function of thermal displace-

number of layers in a film can vary from two to a few thou- ments of the layers is required for analysis of x-ray dynamic

sand, so that the films provide a good opportunity 10 studys.4itering. Recently, this has been examined both by a dis-
crossover from two-dimensional to three-dimensional behavérete mode[2,3] as well as by a continuous ofi¢2]. Both

ior and surface effects on phase transitions. The first dynamis,odels are based on the hydrodynamic equations for bulk
cal light-scattering study of free-standing smectic ”qUid'systems, supplemented by boundary conditions. It has also
crystal films was carried out in Refd]. Light-scattering  peen argued for both models that, in the relevant time scales,
experiments are sensitive either to orientational fluctuationghe permeation process is very slow and does not effect dy-
of molecules associated with layer undulatidss6] or to  namics. The boundary conditions used 2] implicitly as-
fluctuations of the air-liquid interfac@s in the case of Ref. sume that relaxation at the interfaces is much faster than in
[4]), but not the undulations themselves. They also do nothe bulk(i.e., the viscosity at the interfaces is negligibéad
probe distances of the order of the layer spacing. In contrastepresent the balance of elastic forces at the interfaces. In
x-ray dynamic scattering experiments are sensitive to thehis paper we derive a continuous model based on the same
layer undulations and give much better spatial resolutionassumptions as ifil2], but analyze it by a different math-
Nevertheless, their analysis is more difficult than that ofematical approach that directly yields a closed-form expres-
light-scattering studies. In the latter case, it is sufficient tosjion for the correlation function in they(w) representation.
calculate the two-time displacement-displacement correlathe relaxation times of the modes correspond to the poles of
tion function in the wave-vector, frequency, @) represen- this function, which are shown to agree with those derived in
tation, while a x-ray dynamic scattering study requires theRef.[12]. We also show that the continuous model yields the
position, time ¢,t) representation, which neccesitates takingsame characteristic times as the discrete m¢@gd], but
the inverse Fourier transform. For both light-scattering andyith a considerably simplified analysis.
x-ray scattering, finite-size and surface effects require that Quite unexpected results have been recently obtained for
one take into account surface tension and perhaps other sui-film in the crystalB phasg13]. One would expect that the
face parameters. Finite size also leads to quantization, pr@rystalline structure produces a large bending rigidity of the
ducing a set of modes dependent on surface parameters ifim. According to the conventional theory for solid plates
stead of a continuous spectrum. [14], undulation of a thin elastic plate gives rise to extension
The dynamics of smectié-films can be analyzed by hy- of one side(top or bottom and compression of the other
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side. It has been showi4] that the bending rigidity in this tem under consideration. Let us consider in more detail the
case is on the order &°E, whereL is the film thickness and correlation between intensitiggt) at different times. We

E is Young’'s modulus. In the case of a 8rfilm, Young's  recall that the intensity at time is proportional to
modulus is the ratio of uniaxial in-plane stress to uniaxialE(t)E* (t), whereE is the electric field. The measured cor-
in-plane strain in the plates. Estimating the order of magnivelation ~ function is therefore  proportional  to
tude of the bending rigidity using the valueBfexpected for  (£(0)E* (0)E(t)E*(t)). If fluctuations of the field are

a hexagonal two-dimensional crys{db], one finds that the - Gayssian, then the intensity-intensity correlation factorizes
crystal-associated rigidity for a ten-layer film is“l@arger 5o

than the nematic elastic constdfitand hence should drasti-
cally affect diffuse x-ray scattering. However, it is found that (E(0)E* (0)E(t)E*(t))=(E(0)E(t)){E(0)*E* (1))
the rigidity remains the same when a Sxfilm is cooled

and becomes a crystalline pldte3]. Therefore, it is of in- +(E(O)E* (0)(E(1)E* (1))
terest to explain this effect theoretically and make predic- T (E(0)E* (1))(E* (0)E(t
tions for the dynamical behavior of the @rphase. In this (BB ())E*(0B(D).
paper we extend the continuous dynamical model to thB Cr- 1)

phase. We show that the unexpectedly small observed bend- . . , L
ing rigidity is due to well-developed shear deformations in aq‘ak]!_n%lmot?ﬁc%gn: ;[hat tge field changesﬁwnh “mee?fg'
Cr-B plate. We also show that inertial terms are crucial for}[';:e ind daz-r/ € lltf] erm zctomesdzero a tedr averggmq[.over
long wavelength fluctuations and in general are not negli- € perio w. The second term does not depend on ime,
gible. because the system is stationdig., the single-time corre-

The paper is organized as follows. In Sec. Il we reviewIatlon function does not depend on timeThe third term

the scattering intensity in the first Born approximation and its(’fom"’“nS all information about the dynamics and is propor-

relation to the displacement-displacement correlation funct'_Onal t0|S%, where S in the first Born approximation is
tion. In Sec. Il the basic hydrodynamics of smeadhdiquid given by

crystals is described and the assumptions underlying the

model are stated, followed by development of the model it- S=f d3r{p(r,t)p(0,0))e'" Y, 2
self. To expose our method clearly, inertial effects are ne-

glected in this sectiofes done in the analysis of the discrete \yhereq is the scattering vector. In a smecdiquid crystal
model in Ref.[2]), recognizing that this neglect may not be the electron density is

valid for very thin SmA films. The displacement-

displacement correlation function is expressed in terms of

the resolution function of the operaterV2. This is an al- p(r,t)=ps(2); d[z=nd=un(r, D], )
ternative to the analysis in R€fL2], which is based on rep-

resenting the correlation function as a series in the eigenwvhere thez axis is taken perpendicular to the layers and the
functions of —V?. The dependence of characteristic vectorr has components ( ,z). In this equation the sum is
relaxation times on physical parameters of the system is an@arried over the layers indexed Iy ps is the electron den-
lyzed and shown to agree with earlier res{i3,12. In Sec.  sity of a single layerd is the layer spacing, anal(r, ,t) is

IV dynamical equations for the (B-phase are derived. A the averaged displacement of molecules situated around po-
simplified approach is developed based on the fact that isition r, of layer numbem. If random displacements,, of
this type of crystal the shear elastic constant is abnormallyhe layers are Gaussian, then the intenS§itin Eq. (2) is
small. A final dynamical equation is written in terms of dis- given by

placements of the layers, which slide over each other almost
freely. The correlation function is derived by analogy with
that for the SmA phase. It is shown that a finite shear elastic

S:|Ps(qz)|2f dzn% exr{l(m—n)dqﬁlu-m
constant removes the small paramejgK/ 73 [16] which Y

usually allows one to neglect inertial terms in the case of a _ qug ) @)
Sm-A phase(where p, is the mass density ang; is the 2 zImmiLani
layer-normal shear viscosity coefficiefit7]). The intensity
correlation function is explicitly evaluated in the limit of Where
very thin films where one can neglect the layer compressibil-
y J aao Gmr(T 1 D =([Um(0,0) = Un(r, ,D)1?), (5)

ity modulus. It is shown that the intensity correlation func-
tion exhibits oscillatory behavior at long times due to the .4 p<(q,) is the molecular form factor, the Fourier trans-
inertial terms, a result which also applies to thin &fitms. 5. of the densityp<(z). The indicesm, n enumerate the
!n S_ec. V the results are _summarized and a short di_scussicg}nectic layers. Now all the dependence on time is in the
is given. In the Appendix we show how the continuous yisp|acement-displacement correlation functign(r, ,t),
model can be related to the discrete one. which is central to the following considerations. The analysis
of gmn(r, ,t) carried out by Poniewierslat al.[2,3] is based
on the following approach. First, they apply hydrodynamic
equations for bulk smectié-liquid crystals written in terms

A coherent x-ray beam enables one to measLg!(0)) of a continuous displacemeni(r, ,z,t). Second, they re-
and obtain information about dynamical processes in the sysplace the derivativé/ ,u with (u,—u,_)/d, taking into ac-

Il. SCATTERED INTENSITY AND THE DISPLACEMENT-
DISPLACEMENT CORRELATION FUNCTION
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count additional terms for the interfacial effe¢tsirface ten- In this approximation the viscous force ig;VZv,
sion), and obtain a set of coupled equations for the[16,18. We recall that the free energy of a smedtidiquid
displacementsi,(r, ,t). In this paper we use the same hy- crystal film is[6,8,9]

drodynamic equations to calculate

1 2 Lz 2 2 2
g(r, ,z,2',t)=([u(0Z',0 — u(r, ,z,)]?), 6) F=§f d rLl f_uzdz{B[Vzu(rl ,2)[°+K[Viu(r,,2)]%}

wherez remains a continuous variable. In Eg) we set
+ Y[V, u(r, ,z==L/2)]?+[V u(r, ,z=L/2)]%},

gmn(rL 1t):g(rL 1Znazmvt)1 (7)

8
wherez,, and z, are thez coordinates of smectic layers
andn, respectively. where B is the layer compression elastic constant. The
boundaries of the film are at= =L/2, whereL=Nd is the
L Sm-A EILMS thickness of a fi.Im. containi_ngl 'Iayers. The elastic force is
equal to the variational derivative
A. Hydrodynamic equations of SmA films

The full set of hydrodynamic equations for a smedic- - _F: —(—BV2+KA?)u. 9)
liquid crystal can be found, for instance, in Refs. ou
[14,16,18,19 Here we use a simplified version. We first
note that there are no fewer than three characteristic tim
scales for the hydrodynamics of smechicliquid crystals P
[16,2Q (see also Ref[21]). The first is the characteristic 73— Viu—[—BV2+KA?]u=0. (10)
time of the permeation process, which can be viewed as pen- Jt

etration of flux through the smectic layer structure. This pro- . . . .
9 y P Note that the discrete modgt] starts off with this equation.

cess is very weak and its characteristic time scale is ver\/N hall v the following bound ditions:
large. Second is the time required for viscous forces to re- € shall apply the Toflowing boundary conditions.

spond to inertia. This motion is sometimes known in the v

literature as the fast model6], and its time scale is the _Evfu(rl z=*+LI2t)=V,u(r, ,z=*=L/2t)=0,
shortest of the three. The final time scale comes from a bal-

ance between viscous and elastic forces. This is sometimes

known in the literature as the slow mode, although its UiM&yhich are the the same as the static conditions obtained by

scale s n fact intermediate. Dge to the small parametep,inimizing F with respect to the surface displacements
poK/73 [16], which is of order 107, one can consider sepa- \;; ' ;— | /2). Formally these boundary conditions mean

rately the slow and fast modes in & bulk smectic liquid CryS+ha¢ there is no viscosity and relaxation occurs instanta-
tal. This parameter can be considered the ratio of inertia (asly at the surfaces. Although these boundary conditions
elastic forces. The presence of this small parameter is due ig,,04; different from those used in the discrete model, they
the fact that a term proportional @ is absent in the bulk provide the same characteristic times of the relaxation
elastic energy. Equations for.the sIO\_/v mode are ot_)talr!eghodesl It is shown in the Appendix how these boundary
from the general hydrodynamic equations by neglecting in¢ongitions evolve into the ones used in Refg,3]. The

ertial terms. One should be cautious in the case of a thifoundary conditions in Eql11) also are the same as those
free-standing film, because this involves a surface contribusmpjoyed in Ref[12].

tion proportional toqf due to surface tension. If the layers
undulate conformally, then this contribution operates effec-
tively as a bulk one. For smat|, this term prevails over the ] . .
layer-bending terniq* and the approximation based on ne- According to Eq.(6) and (7), the correlation function
glecting inertia ceases to be valid. It is shown in Rgf.that  9mn(rL,t) in Eq. (4) can be expressed as
this happens foqf<2p07/ n%L, wherelL is the film thick- 1
ness andy is the surface tension. For typical parameters and g (r t)= f d%q,[G(q, ,Zmn,Zm,t)
two-layer films, this corresponds tp <10° m~1, which is (2m)?
comparable to an experimental cutoff. The effect of the in-
ertial term has been studied in Ref8] and[12] and also +6G(aL 20,20, = 26(0AL 120, Zm) 1)
will be taken into account here in Sec. IV. _ Xexp(Ir; -q,)], (12

To outline our approach, in this section we will neglect
the inertial terms and focus on only the slow mode, as in Refyhere
[2]. We also make the following assumptions. We neglect
compressibility and tak& -v=0 while calculating viscous G(q, ,z,z',t)=(u*(q, ,2’,00u(q, ,zt)). (13
forces, wherer is the velocity. In the time scale of the slow
mode we neglect permeation, taking thidtas only azcom-  To calculateG we use the method developed in RE3),
ponent withv,=du/dt. We also neglect rolls, and finally which is based on the resolution function of the operator
assume that temperature is constanT €0). —VE. Mathematically this method is formulated as follows.

'e[he balance between the viscous and elastic forces yields

(11)

B. Correlation function
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Taking the Fourier transform of Eq10) over the in-plane
coordinates | , multiplying by u*(q, ,z’,0), and averaging,
we get the equation

-2
s
W= g (22

where the tilde denotes dimensionless variables scaled with

dG(q, ,z,2' t B K ~ ~ =
((h{9t ) _ > ~-V2+ Eqi G(q, ,z2,2' 1), respect toL (for example,q, =Lq, ,r,=r, /L, z=2/L),
7341 andR is defined as
14
with boundary conditions R\(z.2')=LRiz(Z/L,Z'/L). (23
2 Note that the single-time correlation function can be ex-
y?(h(;(qL z=*L/27' 1)*V,G(q, ,z=+L/22',t)=0, pressed in terms of the resolution function[&$
(15) . kgT
G"(q,,z,2")= FR%(%O)(Z'Z,)' (29
which follow from Eq.(11), and the initial condition
G(a, ,2,2,0)=G%q, .2.2"). (16) The solution to Eq(18) is now given by
2
HereG" is the single-time correlation function found in Ref. + , 73dLksT /
= R ‘R .
[6] [see Eq(24) below]. We will show in the Appendix that G(a.220) B2 (Ri(@, .« Ri@, 0)(2.2)
this formulation is equivalent to the discrete dynamical (25)

model developed in Ref$2] and[3]. _ o
To solve these dynamical equations we will make the fol-and the full correlation function is

lowing transformation:
g G(qj_ :Z;Z/yw):G+(qJ_ lezllw)+G+(qJ_ 1212,1_0))5

(26)

G*(qi,z,z’,w)zj' dte'“'G(q, ,z,2',t). (17 .
0 where we have used time-reversal symmetry. The product on

the right-hand side of Eq25) can be calculated using the

Applying this to Eq.(14), integrating by parts and taking into first formula for resolution functions of self-adjoint operators
account that the correlation function vanishestas», we  [27]

obtain
1
2 (R 'RV)(Z!Z,):_[R (le,)_RV(ZlZ,)]' (27)
[~V2-AIG" (0, .22 ) =g -G, 22), (19 - pov
Then one finally obtains
where
, . 2kgT )
a”ia(ﬁ K, G(q, ,z,z ,w)—ﬁlm RMqL,w)(z,z ). (28
AN, w)=1 B _Ech- (19

The displacement-displacement correlation function in the
The solution to this equation can be expressed in terms of thé@al space and time representation is obtained from the Fou-

resolution function rier transform
R\(z2)=[-V2-\]"Xz.2), (20 (u(02".00u(r, ,z,0))
yvhere the domain of th'e. operaterV? are functions satisfy- - Sj dwd?q, e 't LG(g, ,2,2" o).
ing the boundary condition&l 1). (2m)
Here we will just present an expression for the resolution (29)
function (analytical details of the derivation can be found in
Ref. [6]): The integration oveq, is normally cut off in the short and

long wavelength limits by the intermolecular distarecand
in-plane size of the system, respectively. However, for
x-ray experiments the cutoff is equal to the in-plane reso-
lution length, which is normally much less than the in-plane

1 - -
"R’,_ Ty — 24—v|z—2'|
Nz 2v[(v+W)2—(v—W)2e_2”]{(U+W) ¢

N

+2(v?—w?)%e"? coshv |E+~z’|) size of the systerf8,9]. It is also important to use a cutoff in
- - the z direction [9], putting |z—2z'|=d/4 for m=n, which
+(v—w)2e"rvlz=z (21)  accounts for layer smearing.

wherev andw defined as C. Eigenmodes and their characteristic times

The singularities oR as a complex function of» have
v=\—N\, crucial physical significance. According to EQO), the sin-
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gularities ofR correspond to values of(q, ,w) which are
eigenvalues of the operatefvg. Since this operator with

the given boundary conditions is self-adjoint, its eigenvalues

must be real. Hence, according to E49), the frequencies
corresponding to these singularitiesRMmust be imaginary.
From the definition(17), the functionG™* is regular in the
region Imw>0, and therefore each singular valuedfcan
be written as—1/7. Evaluating the Fourier transform over

in Eq. (29), these singularities yield contributions with time
dependence exg|[t|/7], showing that the set of's are the
relaxation times of the modes.

In a case of an infinite system one would obtain a con- |

tinuous spectrum, with relaxation timegq,) being continu-
ous functions of wave numbaey, in the z direction. Finite-
ness of the system in ttedirection leads to quantization and
as a result produces a discrete spectrum.

To calculate the characteristic times, one needs to find the

roots of the denominator in Eq21). The denominator is
zero if

2vw
tanhv)= - ———. (30
v2+w?
Expressing =1wZ, this becomes
tan(wZz) 2z (3D
anwZ)= ——.
z>-1

The singular values ob define via Eq.(22) the singular
values ofx, which in turn define via Eq19) the correspond-
ing singular values ofv. The characteristic times are there-
fore found to be

B7s
BRI o
whereZ,, are the roots of Eq31), which will be ordered as
Z2,<Z,<Z3<---.Form odd (even, these correspond to
symmetric(antisymmetri¢ modes[2,12,23.

Figure 1 illustrates the graphical solution of Eg1). The
solid curve corresponds to tamgZ) and is plotted forw
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FIG. 1. The left- and right-hand sides of E81). The solid line
corresponds to tam(Z) and is plotted fow=0.5. It is seen that
roots with large indices are close to zeros of taj.

,y2

2
3KB)Kql

This expression is valid only fcqf<B/yL. Forq, =0 this
agrees with the result of Poniewiersii al. [2]:

2y -1
—+
L

T~ 73 1- (36)

7L

71

Note that, in this range off, , 7; decreases witly, if 2
<3KB and increases i*>3KB. A more detailed consid-
eration(see also the results of numerical calculation below
shows that forq, =0 only the first relaxation time is non-
zero, while all the others vanish.

Note that the roots of Eq31) with large numbersn and
nonzerow are approximatelyZ,,= mwm. Therefore, for large
mandqg, #0 we have

- B#s
0 (y*m*m?+KB)

(38)

Tm

=0.5. The intersections of the curves show the first three

roots of Eq.(31).
The first root can be found easily far<1. It is useful to
rewrite Eq.(31) as

(Z?—1)sin(wZ)—2Z cogwZ)=0. (33
Expanding this equation in powers wof
2 20,2 1 2 2,3 4
=2+ (Z7—-1)w+2Z7w —E(Zl—l)zlw +0O(w*) =0,
(34)

leads to

. 35)

which in turn yields

Figure 2 shows the first few characteristic times vergus

As noted above, only the first relaxation timg (denotedr,

in Refs.[2,3]) remains nonzero ag, —0. The behavior of
the relaxation times in Fig. 2 is identical to that obtained by
more involved calculations in Ref2].

The correlation functiowy,,,(r, ,t), which determines the
scattering intensitysee Eq.(4)], can be obtained by taking
the inverse Fourier transform over andq, , see Eq(29).
We shall present results fgy,(r, ,t) in the following sec-
tion, after generalizing the theory to ®Grfilms.

IV. Cr- B FILMS
A. Elastic energy of a hexagonal crystal

To account for the crystal structure of the Bphase, it is
instructive to consider deformations and the elastic energy
associated with them. Deformations of 3D crystals are de-
scribed by the strain tensor
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FIG. 2. Four relaxation times,,, m=1,2,3,4 vs in-plane wave
number for a five-layer film with the parametersi=2.8
x107°m, K=10 "N, B=2.5x10° N/m?, y=3X10 2 N/m,

73=0.1 kg/s/m.

whereu is the displacement vector. The elastic energipr
solids is quadratic in the symmetrized strains

The elastic-constant tensé;;,, depends on the symmetry
of the system. For a uniaxial system with symmetry axis

1
uij =5 (Vjui+Viuy),

1 3
FZE d rKij|mUijU|m.

alongz we have[14,20

1
F uniaxia™ EJ d3r[cll( u>2<x+ uf/y) + 2C12uxxuyy

Here the elastic-constant tensor has the form

+2C13(Uyyt Uyy) Uz,

2 2 2,2
+2(Cy— Crugy+ Caaliz,+ Cug(Uy,+ Uy,

Kiiim = Cssia; +lc —Cy) (8 6L, + 85 61
ijlm 33a|ajalam 2( 11 12)( il “jm il “im

In these equations, the quantity takes its conventional
meaning of a unit vector along the axis of symmetry, and

In our system of coordinates = 6;,. The stress tensor can

8=

now be expressed as

_oF
_Eij

O-ij

5”‘ _aiaj .

=KijimUim

+ajamsij) + C13(8ia; Sy + a1am5;;).

1
+C1285 S+ 7Ca(@a Simtaja 8+ aian

0.16

(39

(40)

(41)

51.

jl

(42

(43

with Kjjim given by Eq.(42).

A general approach to deriving dynamical equations of
solids is formulated in Refl14]. For nondissipative systems,
these equations describe a balance between elastic forces and
inertia:

(92Ui
Po _&tz :VjO'ij . (44)

If the system is viscousg;; should be replaced byr;;
+aj;, where the tensow; accounts for viscous forces and
can be expressed through a dissipation funckoams

oR
Uij:gij, (45)
with
—ﬂ (46)
Uij = ot

The dissipation functiofR is quadratic inv;;, has the same
symmetry properties as the elastic energy, and can be written
by analogy with Eq(42) as

(s
R= EJd I 2ijimVijVIm » (47)

with the viscosity tensor given by

Dijim = 718i8j818m+ 72( &if Sjm+ 851 Gi) + (72— 1) 5ﬁ- Sim
+73(8i@ 8+ 82 Gy + A2 55 + AjANS;)
+ 75(848) Sy T j@m S5 ). (48)

The coefficients here are chosen to correspond to the form of
the viscous tensor in a smectic liquid crystal. Note, however,
that the values of the viscosity coefficientg can differ
from those for a liquid smectic phase.

The dynamical equation accounting for the dissipative
forces is now given by

(92Ui

d
Po?: Kijlm"'ﬂijlmﬁ Vilim - (49)

B. Easy-shear approximation

As seen from Eq(49), in general there is a set of three
coupled differential equations that characterize dynamics of
small deformations of a crystal. Here we discuss a simplified
version which, on one hand, is similar to the description of
the SmA phase in Sec. Ill and, on the other hand, takes into
account the crystalline structure of the Biphase.

In fact, although the crystalline phase has a finite shear
modulusC,,, it is abnormally small. The rati@€,4,/C; is
reported to be 10% [24,25. SinceC,, is very small, the
conventional analysis of bendind4], which ignores shear,
is not valid. Here we consider the approximation where all
in-plane deformations are neglected, while instead shear de-
formations are well developed, which is termed the easy-
shear approximation. Mathematically, this approximation
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corresponds to assuming that the displacenuecén be ex-
pressed as

uj(r)=6j;u(x,y,2). (50)
The corresponding strain tensor elements are

1du

uxzzi &v

14du

uyz: E W ,
(51)

ou

Uee™ Gz

Uyy= Uyy=Uy,=0.

Using these elements in E@Gtl), the latter becomes

1
C33(VZU)2+ZC44(VLU)2 . (52

1 3
Funiaxzif d=r

It is seen that gz corresponds to the smectic compressibility

coefficientB, and henceforth we will denote it & instead

of C53, keeping in mind that its value can differ from that for

a SmA phase. The shear elastic coefficieny & finite but

small, so it is justified keeping the next-order term with re-
spect to in-plane derivatives, which is a dominant term in th

COHERENT X-RAY SCATTERING AND DYNAMICS G- . ..

e

705

Using Eqgs.(53) and (54), this becomes

a2u(r,t) d , 1 5
Po &tz = 773EAL+BVZ+ZC44AL_KAL u(l’,t)
(56)
Taking the Fourier transform over , we get
a2u(q, ,z,t) d 1
Po 7 |~ 7307 i BV:-— ZCMQf
—Kaq|u(a, ,z,b). (57

As shown in Refs[2,3] (see also Ref$21,26 for discussion

of the characteristic timesthe inertial term in the case of a
smectic phase is usually negligible on the time scales of in-
terest. To check the validity of this approximation in the
present case, we first estimate the characteristic time pro-
vided by the balance of viscous and elastic forces:

-1
(58)

1 2
T=13 ZC44+ Ka?

The ratio of inertia to the elastic force is then given by

liquid smectic phase. Therefore, we end up with the elastic

energy:

1 1
FZEI dBr[szu)%K(Aiu>2+zc44<viu>2 :
(53

A crucial consequence of shear elastic deformations is that

they produce a bulk term proportional t& (u)?, which is

2
poK

2
73

(59

4K g?

We recall that the prefactquK/n§ is a small parameter of
rder 10 6—10 5. Therefore the inertial term is negligible
when the following criterion is satisfied:

forbidden in smectic phases where the layers slide freely.

The absence of such a term leads to the Landau-Peierls in-

stability of bulk smectic phases. Any finit€,, makes the

mean-square fluctuations converge independently of the size

of the system.

2
PoCia

T < (60)
16K 7591

To use this approximation we should also include viscousraking C,,= 10> N/m?, K=10"!' N, 73=10"* kg/m/s, p
forces. As we did earlier, we neglect compressibility by as-=10® kg/m?, Eq. (60) givesq, >1.6x 10° m~. Hence, for

suming V-v=0. The components, and v, are equal to

smallerq, one has to keep the inertial term in the dynamical

zero, due to Eq(50). Hence, neglecting the compressibility, equation, which means that the slow and fast modes cannot
we also have,,=0. Therefore, the only components giving be considered separately for such small valueg,af In the

contributions to the viscous forces arg andv,,. The dis-
sipation function in terms of, is

. 3 2
R=§ d°rn3(V,v,)” (54
The elastic and viscous forces acting in #direction can be
expressed as derivativesBfandR with respect tas andv ,,
respectively. The dynamical equati®d9) now reduces to
[14]

du, oF O6R

POt =T 50 v, (55

following we derive the displacement-displacement correla-
tion function taking into account the inertial term. We recall
that, for very thin smectic films fluctuating conformally, the
inertial term is not negligible due to the surface tension, as
mentioned in Ref[2]. This is also true in the case of the
Cr-B film. The criterion(60) does not involve the film thick-
ness and thus provides a further reason for taking the inertial
term into account.

C. Correlation function for a Cr- B film

The displacement-displacement correlation function is the
solution to the equation
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#°6(q. ,2.2'.1) ,96(q.,2.21) ) 04
Po = — g2 ——————B| —V? 033
at ot .
03
Cu, K, ,
+ﬁqL+§qL G(qlizyz 1t)1 .—'.:O.ZS

6y 202

with the same boundary conditions as in Etf) and initial - 013
condition(16) as well as < ool
P 0.05
— Y = =
The latter initial condition follows from the fact thatandv, s 7 0.5 1o 15 2.0
are statistically independefgee also Ref3)). q,  (10°m™)
To solve this dynamical equation we make the the same
transformation as in the case of Skfilms in Eq. (17). In- FIG. 3. The first inverse relaxation timg * vs in-plane wave
tegrating by parts leads to the equation numberq, . The triangles and circles show the real part of the fast

and slow branches, respectively. The dots show the imaginary part

773Qf 1pow of the first relaxation time of both of the branches. These results are
[-VZ2-\]G*(q, ,z,w)=< 5 B )Go(qL ,2,2'), for a five-layer film with the parameterk=10"'N, B=2.5
X 10° N/m?, y=3.0x10"2 N/m, 73=0.1 kg/s/m,Cy,4
(63 _ 105 N2, d=2.8x10"° m, py=1C° kg/n?.
where\ is now given by Figures 3 and 4 show the inverse relaxation times of the

slow and fast branches of the first two modes duét@nd
wngqf pow? Cuq , K, Z,, respectively. The values af; andZ, have been found
Map,w)=1—p—+—5——72501- g4 - ®4  numerically by solving Eq(31). Both real and imaginary
parts of the relaxation times are shown. The curves in Fig. 3
For po=0 andC,,=0 this is identical to the corresponding confirm the behavior of the real and and imaginary parts
expression(19) for the slow mode in a Sm-film. The so-  predicted by Eq(67) in the region of smalfj, . In contrast
lution of Eq. (63) is the same as for E418), differing only ~ to the analysis in Sec. lll, the relaxation times do not remain
in the expressions on the right-hand side andMoRepeat- finite asq, vanishes, but diverge to infinitfsee also Refs.
ing the same arguments as in Sec. lll we obtain the samie3,12)).

final expressior(28) for G, but with X defined by Eq(64). The correlation functiomgmq(r, ,t), which is relevant to
X-ray scattering, can be obtained by taking the inverse Fou-

rier transforms, see Eq$29) and (12). Figure 5 shows re-

D. Eigenmodes of the CrB film and their characteristic times

To analyze the relaxation times we again consider the 60
zero points of the dominator in E€R1). As in the case of a 50
smectic film, we setw=—1/7, v=1wZ. The relaxation
times are now the roots of the equation 40

1 1.1 ya! o2
Po— ~ 773Qf;+ ZC44QE+KQj+ B Z:=0. (65 2
T

Hence, for anyZ,, we now have two characteristic times. ™« 10|
The larger one corresponds to the slow mode in theASm-
phase. The other one corresponds to the fast mode, which w
did not consider in Sec. lll. Fan=1 and small, we again 10|
can use EQq(35). This yields the approximation

1 1 5 5 1 5 10 15 6 20 25 30
2 Y 4 Y 2 (10m™)
—— —+K|{1- +H—+ =0. dv
Po Ti 773qL ™ SKB) qL ( L 4 C44) qi 0
(66) FIG. 4. The second inverse relaxation timg® vs in-plane

wave number, . The triangles and circles show the real part of the

Expanding the roots of Eq66) in powers ofg, , we obtain fast and slow branches, respectively. The dots show the imaginary
- part of the second relaxation time, producing oscillations in the

1 1 /LC.+8 correlation functions. The solid line shows the second inverse re-
—~TF zw /:;‘:qupL EQZ ) (67) laxation time worked out using Eq32) for a smectic film. All

1 .
T1 2po parameters are the same as for Fig. 3.
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FIG. 5. The two-time displacement-displacement correlation

function gn,(r, ,t) vs in-plane distancer, at various times
(B/73)t=0,1C,10%, for a 50-layer SmA (dots and CrB (triangles
film with m=n=25, C,,=10° N/m?, andp,=10° kg/n?. The fol-
lowing parameters are taken to be the same for theASmed CrB
phases: B=10° N/m?, K=10"N, y=2X102N/m, 7,
=0.1 kg/s/m,d=2.8x10"°m, kgT=4.45x102J. The short
and long wavelength cutoffs are taken to #e4x10 °m and
A=2Xx10"% m, respectively.

sults of numerical calculations carried out for various re-

duced times B/ 73)t=0,1C*,10* for a 50-layer SmA (dotg
and CrB (triangles film with m=n=25. The values of other

parameters used are indicated in the figure caption. Small

bumps in the curves in a narrow region around=A are

due to the cutoff of the integration in the long-wavelength
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which resembles the more exact equati@6) due toZ;.
Note that Eq.(69) yields the same relaxation time for small
g, given by Eq.(67). Suppose the roots are denotedand

7¢, Wheres andf stand for slow and fast. Note also that the
real parts of the roots of Eq69) are always positive and
their imaginary parts are always opposite to each other. To
simplify calculating the Fourier transform ovey; it is useful

to rewrite Eq.(68) as

G(q, ,w)
2kgT (7t 74)
- Lporsmi(w+1/75) (0 —1/75)(w+1 7)) (0—117F)
(70)

Fourier transformation yields

1 o0
G(a.,H= EL dwe™"“'G(q, ,)

2

 2kgT( 75+ 7¢) 757 Ts

Lpo (st 72) (75t 77 ) (75— 1)
2
Xef‘t‘/Tsﬁ- i ef‘tI/Tf .
(re+ 78 ) (et 75 ) (76— 75)
(71

limit. Figure 5 shows negligible differences between the cor-The relaxation timess and 7; depend on the wave number

relation functions for the Sm-and CrB films at short in-

g, . For sufficiently largeg, both relaxation times are real.

plane distances. Significant differences occur at large inWhen ;> 7, i.e., in the limit of very largeq, , Eq. (71)
plane distances, i.e., in the long wavelength limit. Thesalescribes relaxation with the single characteristic tipelf

differences are primarily due to,grather than inertial ef-
fects contributed by, since the latter do not affect the final

state. Note the approximately linear dependence of both the

Sm-A and CrB correlation functions on log() before the
cutoff takes effect, agreeing with the analyses in R&4.2).

E. High compressibility approximation

(72

8y _
T+C44 (m5—4poK) 2,

2 2__
g} <0:=po

then the roots of Eq(69) are complex. For the same set of
parameters as used for Fig. 3 this criterion yietgs<1.3

In the case of thin films that undulate conformally we canx 108m~1. which fits the results of numerical calculation

neglect layer compressibility and assuBdo be infinitely
large. In this limit the correlation functio@ does not depend

shown in Fig. 3. In this range af, the roots of Eq(69) can
be written asrs ;= 7'+ 17" with real and positive values of

onzandz' and the film can be considered as a 2D system,’ ' The value ¢'2+ 7'2)/7' is the characteristic time for

Taking the limitB—< in Eq. (28), one obtains

.

2
—pow?—lw 730}

2kgT
Lw

2y

L

G(q,,0)= 92 +Kq?

1
+ ZC44

-1
(68)

Again, the singular points of this function define the charac
teristic times. Expressing= —1/7, we obtain the equation

1,1,
Po— — MUl —+KaAL+
T

y 1
— +7Cu g°=0, (69

exponential decay, while”/(7'?+ 7'?) is the frequency of
oscillations.

To show how this can affect x-ray scattering data, we
calculate the time-dependent pat of the intensity. To
model a real experiment, we will incorporate into E4). an
instrumental resolution function used in rocking geometry.
In this geometry one of the detector slits is wide open, while
the other remains narrow with inverse widig, . In this

case the 2D integral in E@4) is reduced to an integral over

x with the weight function exp-(xAq,)%2]. The details as
well as general consideration of the effects of an instrumen-
tal resolution function on the data in an arbitrary geometry
can be found in Ref.27]. We recall that for a thin uniformly
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taking into account finite-size effects and surface tension. In
the case of S free-standing films, the model is identical
to that discussed in Reff12]. Here we show how the relax-
ation times of the system result from poles of the resolution
function, written explicitly in Eq(21). The model yields the
same relaxation times as the discrete m¢@gd], but using a
considerably simpler analysis. As an example of the advan-
tages of the continuous model, E86) predicts the growth
of the first relaxation time witly, if y>>3KB, and decrease
in the opposite case, for smajl . This theoretical result is
difficult to achieve via numerical calculations based on the
discrete model. In the limiting casg =0, Eq.(36) provides
the same behavior of the relaxation time as measured by
Priceet al. [1].

To the best of our knowledge, this is the first time that the

dynamic correlation function has been discussed in the case
FIG. 6. The time-dependent pa8i? of the two-time intensity-  Of Cr-B films. We have been shown that although theBCr-
intensity correlation function with an instrumental resolution func- phase has a true 3D ordering, its fluctuations resemble ran-
tion used in rocking geometry. The calculations have been carriedom undulations of layers in the Sfphase. This occurs
out for a five-layer CiB film using Egs.(71), (73), and(74). The  due to an abnormally small shear elastic constant. The posi-
components of the scattering vector are=0, q,=2=/d and the tional order does not give rise to a large bending rigidity
inverse instrumental resolution length atey,=10° m™*! (dots,  caused by compression and stretching of the top and bottom
Agy=10" m™! (triangles. The cutoffs are the same as for Fig. 5, layers, since the stresses are quenched by well-developed
while all other parameters are the same as for Fig. 3. shear deformations. We have developed the easy-shear ap-
proximation, which allows us to distinguish the main fea-
undulating film the displacement-displacement correlationtures of the system using an analysis which retains the sim-
function is independent of the layer numberaindn. There-  plicity of that applied to SnA films. It has been shown that
fore, Eq.(4) becomes the shear elasticity affects the relaxation times in the long
wavelength limit. In this limit the inertial term in the dy-
namical equations is important and one has to consider the
slow and fast modes together. This has several effects on the
relaxation times. First, the relaxation times are complex in
the long wavelength limit. The real parts correspond to re-
laxation, while the imaginary parts produce oscillations in
1 (2nla the correlation functions. Second, all real parts of the relax-
g9(ry . )= ;Lﬁmdqich[G(qi’o)_JO(rLQL)G(qL Bl ation times diverge ag, —0, in contrast to the results for
(74)  smecticA films obtained on neglecting the fast mode. Third,
in the range where the relaxation times are complex, the real
Jo denoting the zeroth-order Bessel function. parts of the slow and fast modes are equal to each other,
Equations(71), (73), and(74) allow one to calculate the While their imaginary parts are opposite to each other. This
intensity-intensity correlation function measured in coherenhas an important consequence for x-ray scattering because
x-ray experiments. Figure 6 shows the intensity-intensitythe density-density correlation is mainly driven by long
correlation function for a five-layer (B-film at the Bragg Wwavelength undulations of the layers. Figure 6 shows that the
peak @, =0, q,=2=/d). The instrumental cutoffAq, nonmonotonic behavior of the intensity-intensity correlation
=10° m! corresponds to a real experimdi®. One can function, which stems from the long wavelength undulations,
clearly see oscillatory behavior that stems from nonoveris present even if the long wavelength range is “screened”
damped fluctuations with wave numbers<q.. These os- by the instrumental resolution length{<Aq,).
cillations result primarily from inertial effects due to surface  Although we have concentrated on applications to coher-
tension rather than shear effects. In fact, essentially identic&nt x-ray scattering, the two-time displacement-displacement
results are obtained for a S&film in this thin-film regime, ~ correlation functions for the Sm-and CrB phases derived
since theC,, term in Eqgs.(68), (69), and(72) is negligible  in this paper can also be used for calculating the intensity-
compared with they/L term in those equations, for small intensity correlation function in conventional dynamic light-
thicknessL. Thus oscillations irg should be observable for scattering experiments. Both Sfnand CrB phases are op-
both SmA and CrB films which are sufficiently thin, as has tically anisotropic. Random undulations of the layers lead to
been indicated by preliminary experimefs]. fluctuations of the director, which scatters light. A detailed
analysis of the finite-size and surface effects on static light
scattering can be found in Rd6]). In the case of dynamic
light-scattering we need the displacement-displacement cor-
In this paper, we have developed a continuous dynamicailation function either in theq, ,z,z',t) or (q, ,z,2’,w)
model which allows one to calculate the two-time density-representations, rather than in the (z,z',t) representation.
density correlation function for SrA-as well as CB films,  This significantly simplifies the analysis. Another simplifica-

* 1 1,
Socf dxex |qxx—§(Aqxx)2—§qu(x,t), (73

where the correlation functiog is calculated from

V. DISCUSSION AND CONCLUSIONS



PRE 62 COHERENT X-RAY SCATTERING AND DYNAMICS O . .. 709

tion arises from the fact that films of a few hundred layersfor j=1 .. .M, together with the boundary conditions
can be considered incompressible, because light is not able
to probe the layer spacing distance. Therefore, one can use

the explicit formula(71) to evaluate the scattering intensity. YQE
B UmT H(UM+1_UM):O;

ACKNOWLEDGMENTS

This study was supported by the Natural Sciences and 2 1
Engineering Research Coun@(Danadaa. AS. also appreci- V_Chur —(uy—ug)=0. (A3)
ates the hospitality of the Institute for Atomic and Molecular B h
Physics(Amsterdam, the Netherlandand thanks W.H. de
Jeu and B. Ostrovskii for many fruitful discussions. From Eq.(A3) we can expressy anduy .1 as
APPENDIX: EQUIVALENCE TO THE DISCRETE MODEL yqz

1

In this appendix we show the equivalence of the discrete Uo= ( 1- ?h) U, (A4)
model[2,3] and the continuous model developed in this pa-
per. The continuous model is specified by the equdtsae YCIi
Eq. (10)] UM+1:(1_Fh)UM1 (AS5)

2
au ,Z,t K
T AL b 5d[u(a .z, (A1)
and substitute them into E¢A2). This leads to
with zvarying from—L/2 toL/2, as well as by the boundary P 2
conditions(11). Let us try to solve this equation using the 7391 @:i( 2—u1)—<5q4+7—ql)u1
following approximation. The range- L/2,L/2] is split into B dt R B™ Bh/™™
M+1 sections of widthh=L/(M +1). The boundaries of
these sectipns are-L/2, —L/2+h, —L/2+2h, ... . The 739° duy 1 K, ek
corresponding values ofu are denoted ug=u(z= B Tzﬁ(—uMﬁLuM_l)— qu-i- Bh | Um

—L/2), u;=u(z=-L/2+h), ... Uys1=u(z=L/2). The
solution to the differential equatio1) is approximated by
the solution to the following set of difference equations

The other equations are the same as in(Bg). If we take
2 M to be the number of smectic layers ando be the layer
7341 9Y; :i(u. —2ui+U;_4)— Eq‘l u;, (A2) spacingd, then this set of equations coincides with that used
B gt np2 )Tt T TTY gl in the discrete moddL].
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