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Coherent x-ray scattering and dynamics of fluctuations in smectic-A and crystal-B films:
Continuous model

A. N. Shalaginov and D. E. Sullivan
Department of Physics and Guelph-Waterloo Physics Institute, University of Guelph, Guelph, Ontario, Canada N1G 2W1

~Received 7 February 2000!

We present a theoretical study of the dynamic displacement-displacement and intensity-intensity~for coher-
ent soft x-ray scattering! correlations in Sm-A as well as Cr-B free-standing films. The work is based on a
continuous hydrodynamic model that allows one to calculate efficiently the dynamic correlation functions and
considerably simplifies earlier analyses of finite-size and surface effects in Sm-A films. The model is extended
to Cr-B films. We show that despite the crystalline order, the Cr-B film is a strongly fluctuating system, which
is due to an abnormally small shear elastic constant. An easy-shear approximation is developed to describe the
fluctuations in the Cr-B phase. We predict nonmonotonic behavior of the intensity-intensity correlation func-
tion in both Sm-A and Cr-B films. The analysis can be applied to either coherent x-ray or conventional laser
dynamic light scattering experiments.

PACS number~s!: 61.30.Cz, 83.70.Jr
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I. INTRODUCTION

Although the idea of studying dynamical processes
means of scattering is not new and conventional light s
tering has been widely used since lasers became avail
coherent x-ray dynamic scattering studies have been ca
out only recently. In particular, there have been a numbe
recent theoretical and experimental dynamical studies
layer fluctuations in free-standing films made of smecticA
liquid crystals@1–3#. A smectic liquid crystal consists of
stack of two-dimensional liquid layers. Mean-square therm
undulations of the layers diverge logarithmically with th
size of the system due to the Landau-Peierls instability. T
number of layers in a film can vary from two to a few tho
sand, so that the films provide a good opportunity to stu
crossover from two-dimensional to three-dimensional beh
ior and surface effects on phase transitions. The first dyna
cal light-scattering study of free-standing smectic liqu
crystal films was carried out in Ref.@4#. Light-scattering
experiments are sensitive either to orientational fluctuati
of molecules associated with layer undulations@5,6# or to
fluctuations of the air-liquid interface~as in the case of Ref
@4#!, but not the undulations themselves. They also do
probe distances of the order of the layer spacing. In contr
x-ray dynamic scattering experiments are sensitive to
layer undulations and give much better spatial resoluti
Nevertheless, their analysis is more difficult than that
light-scattering studies. In the latter case, it is sufficient
calculate the two-time displacement-displacement corr
tion function in the wave-vector, frequency (q,v) represen-
tation, while a x-ray dynamic scattering study requires
position, time (r ,t) representation, which neccesitates taki
the inverse Fourier transform. For both light-scattering a
x-ray scattering, finite-size and surface effects require
one take into account surface tension and perhaps other
face parameters. Finite size also leads to quantization,
ducing a set of modes dependent on surface parameter
stead of a continuous spectrum.

The dynamics of smectic-A films can be analyzed by hy
PRE 621063-651X/2000/62~1!/699~12!/$15.00
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drodynamic theory using either a set of linear equations~dis-
crete model! or an ordinary differential equation with bound
ary conditions ~continuous model!. There have been a
number of theoretical studies of single-time correlation fun
tions based on both a discrete model@7,8# and a continuous
model @6,9#. Excluding very narrow regions close to inte
faces, these models yield the same correlation function.
continuous model was successfully used to fit scattering d
@10# and extract the surface tension and elastic constant
has been shown that the profile of mean-square displacem
fluctuations predicted by these models plays a crucial role
layer-by-layer crystallization in free-standing smectic film
@11#.

The two-time correlation function of thermal displac
ments of the layers is required for analysis of x-ray dynam
scattering. Recently, this has been examined both by a
crete model@2,3# as well as by a continuous one@12#. Both
models are based on the hydrodynamic equations for b
systems, supplemented by boundary conditions. It has
been argued for both models that, in the relevant time sca
the permeation process is very slow and does not effect
namics. The boundary conditions used in@12# implicitly as-
sume that relaxation at the interfaces is much faster tha
the bulk~i.e., the viscosity at the interfaces is negligible! and
represent the balance of elastic forces at the interfaces
this paper we derive a continuous model based on the s
assumptions as in@12#, but analyze it by a different math
ematical approach that directly yields a closed-form expr
sion for the correlation function in the (q,v) representation.
The relaxation times of the modes correspond to the pole
this function, which are shown to agree with those derived
Ref. @12#. We also show that the continuous model yields t
same characteristic times as the discrete model@2,3#, but
with a considerably simplified analysis.

Quite unexpected results have been recently obtained
a film in the crystal-B phase@13#. One would expect that the
crystalline structure produces a large bending rigidity of
film. According to the conventional theory for solid plate
@14#, undulation of a thin elastic plate gives rise to extens
of one side~top or bottom! and compression of the othe
699 ©2000 The American Physical Society
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side. It has been shown@14# that the bending rigidity in this
case is on the order ofL2E, whereL is the film thickness and
E is Young’s modulus. In the case of a Cr-B film, Young’s
modulus is the ratio of uniaxial in-plane stress to uniax
in-plane strain in the plates. Estimating the order of mag
tude of the bending rigidity using the value ofE expected for
a hexagonal two-dimensional crystal@15#, one finds that the
crystal-associated rigidity for a ten-layer film is 103 larger
than the nematic elastic constantK and hence should drast
cally affect diffuse x-ray scattering. However, it is found th
the rigidity remains the same when a Sm-A film is cooled
and becomes a crystalline plate@13#. Therefore, it is of in-
terest to explain this effect theoretically and make pred
tions for the dynamical behavior of the Cr-B phase. In this
paper we extend the continuous dynamical model to the CB
phase. We show that the unexpectedly small observed b
ing rigidity is due to well-developed shear deformations in
Cr-B plate. We also show that inertial terms are crucial
long wavelength fluctuations and in general are not ne
gible.

The paper is organized as follows. In Sec. II we revi
the scattering intensity in the first Born approximation and
relation to the displacement-displacement correlation fu
tion. In Sec. III the basic hydrodynamics of smectic-A liquid
crystals is described and the assumptions underlying
model are stated, followed by development of the mode
self. To expose our method clearly, inertial effects are
glected in this section~as done in the analysis of the discre
model in Ref.@2#!, recognizing that this neglect may not b
valid for very thin Sm-A films. The displacement
displacement correlation function is expressed in terms
the resolution function of the operator2¹z

2 . This is an al-
ternative to the analysis in Ref.@12#, which is based on rep
resenting the correlation function as a series in the eig
functions of 2¹z

2 . The dependence of characteris
relaxation times on physical parameters of the system is
lyzed and shown to agree with earlier results@2,3,12#. In Sec.
IV dynamical equations for the Cr-B phase are derived. A
simplified approach is developed based on the fact tha
this type of crystal the shear elastic constant is abnorm
small. A final dynamical equation is written in terms of di
placements of the layers, which slide over each other alm
freely. The correlation function is derived by analogy wi
that for the Sm-A phase. It is shown that a finite shear elas
constant removes the small parameterr0K/h3

2 @16# which
usually allows one to neglect inertial terms in the case o
Sm-A phase~where r0 is the mass density andh3 is the
layer-normal shear viscosity coefficient@17#!. The intensity
correlation function is explicitly evaluated in the limit o
very thin films where one can neglect the layer compress
ity modulus. It is shown that the intensity correlation fun
tion exhibits oscillatory behavior at long times due to t
inertial terms, a result which also applies to thin Sm-A films.
In Sec. V the results are summarized and a short discus
is given. In the Appendix we show how the continuo
model can be related to the discrete one.

II. SCATTERED INTENSITY AND THE DISPLACEMENT-
DISPLACEMENT CORRELATION FUNCTION

A coherent x-ray beam enables one to measure^I (t)I (0)&
and obtain information about dynamical processes in the
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tem under consideration. Let us consider in more detail
correlation between intensitiesI (t) at different times. We
recall that the intensity at timet is proportional to
E(t)E* (t), whereE is the electric field. The measured co
relation function is therefore proportional t
^E(0)E* (0)E(t)E* (t)&. If fluctuations of the field are
Gaussian, then the intensity-intensity correlation factori
as

^E~0!E* ~0!E~ t !E* ~ t !&5^E~0!E~ t !&^E~0!* E* ~ t !&

1^E~0!E* ~0!&^E~ t !E* ~ t !&

1^E~0!E* ~ t !&^E* ~0!E~ t !&.

~1!

Taking into account that the field changes with time aseıvt,
we find that the first term becomes zero after averaging o
the period 2p/v. The second term does not depend on tim
because the system is stationary~i.e., the single-time corre-
lation function does not depend on time!. The third term
contains all information about the dynamics and is prop
tional to uSu2, where S in the first Born approximation is
given by

S5E d3r ^r~r ,t !r~0,0!&eır•q, ~2!

whereq is the scattering vector. In a smectic-A liquid crystal
the electron density is

r~r ,t !5rs~z!(
n

d@z2nd2un~r' ,t !#, ~3!

where thez axis is taken perpendicular to the layers and
vectorr has components (r' ,z). In this equation the sum is
carried over the layers indexed byn, rs is the electron den-
sity of a single layer,d is the layer spacing, andun(r' ,t) is
the averaged displacement of molecules situated around
sition r' of layer numbern. If random displacementsun of
the layers are Gaussian, then the intensityS in Eq. ~2! is
given by

S5urs~qz!u2E d2r'(
m,n

expF ı~m2n!dqz1ır'•q'

2
1

2
qz

2gmn~r' ,t !G , ~4!

where

gmn~r' ,t !5^@um~0,0!2un~r' ,t !#2&, ~5!

and rs(qz) is the molecular form factor, the Fourier tran
form of the densityrs(z). The indicesm, n enumerate the
smectic layers. Now all the dependence on time is in
displacement-displacement correlation functiongmn(r' ,t),
which is central to the following considerations. The analy
of gmn(r' ,t) carried out by Poniewierskiet al. @2,3# is based
on the following approach. First, they apply hydrodynam
equations for bulk smectic-A liquid crystals written in terms
of a continuous displacementu(r' ,z,t). Second, they re-
place the derivative¹zu with (un2un21)/d, taking into ac-
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count additional terms for the interfacial effects~surface ten-
sion!, and obtain a set of coupled equations for t
displacementsun(r' ,t). In this paper we use the same h
drodynamic equations to calculate

g~r' ,z,z8,t !5^@u~0,z8,0!2u~r' ,z,t !#2&, ~6!

wherez remains a continuous variable. In Eq.~4! we set

gmn~r' ,t !5g~r' ,zn ,zm ,t !, ~7!

wherezm and zn are thez coordinates of smectic layersm
andn, respectively.

III. Sm- A FILMS

A. Hydrodynamic equations of Sm-A films

The full set of hydrodynamic equations for a smecticA
liquid crystal can be found, for instance, in Ref
@14,16,18,19#. Here we use a simplified version. We fir
note that there are no fewer than three characteristic t
scales for the hydrodynamics of smectic-A liquid crystals
@16,20# ~see also Ref.@21#!. The first is the characteristi
time of the permeation process, which can be viewed as p
etration of flux through the smectic layer structure. This p
cess is very weak and its characteristic time scale is v
large. Second is the time required for viscous forces to
spond to inertia. This motion is sometimes known in t
literature as the fast mode@16#, and its time scale is the
shortest of the three. The final time scale comes from a
ance between viscous and elastic forces. This is somet
known in the literature as the slow mode, although its ti
scale is in fact intermediate. Due to the small parame
r0K/h3

2 @16#, which is of order 1026, one can consider sepa
rately the slow and fast modes in a bulk smectic liquid cr
tal. This parameter can be considered the ratio of inertia
elastic forces. The presence of this small parameter is du
the fact that a term proportional toq'

2 is absent in the bulk
elastic energy. Equations for the slow mode are obtai
from the general hydrodynamic equations by neglecting
ertial terms. One should be cautious in the case of a
free-standing film, because this involves a surface contr
tion proportional toq'

2 due to surface tension. If the laye
undulate conformally, then this contribution operates eff
tively as a bulk one. For smallq' this term prevails over the
layer-bending termKq'

4 and the approximation based on n
glecting inertia ceases to be valid. It is shown in Ref.@2# that
this happens forq'

2 ,2r0g/h3
2L, whereL is the film thick-

ness andg is the surface tension. For typical parameters a
two-layer films, this corresponds toq',106 m21, which is
comparable to an experimental cutoff. The effect of the
ertial term has been studied in Refs.@3# and @12# and also
will be taken into account here in Sec. IV.

To outline our approach, in this section we will negle
the inertial terms and focus on only the slow mode, as in R
@2#. We also make the following assumptions. We negl
compressibility and take¹•v50 while calculating viscous
forces, wherev is the velocity. In the time scale of the slo
mode we neglect permeation, taking thatv has only az com-
ponent withvz5]u/]t. We also neglect rolls, and finall
assume that temperature is constant (¹T50).
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In this approximation the viscous force ish3¹'
2 vz

@16,18#. We recall that the free energy of a smectic-A liquid
crystal film is @6,8,9#

F5
1

2E d2r'H E
2L/2

L/2

dz$B@¹zu~r' ,z!#21K@¹'
2 u~r' ,z!#2%

1g$@¹'u~r' ,z52L/2!#21@¹'u~r' ,z5L/2!#2%J ,

~8!

where B is the layer compression elastic constant. T
boundaries of the film are atz56L/2, whereL5Nd is the
thickness of a film containingN layers. The elastic force is
equal to the variational derivative

2
dF

du
52~2B¹z

21KD'
2 !u. ~9!

The balance between the viscous and elastic forces yield

h3

]

]t
¹'

2 u2@2B¹z
21KD'

2 #u50. ~10!

Note that the discrete model@2# starts off with this equation.
We shall apply the following boundary conditions:

2
g

B
¹'

2 u~r' ,z56L/2,t !6¹zu~r' ,z56L/2,t !50,

~11!

which are the the same as the static conditions obtained
minimizing F with respect to the surface displacemen
u(r' ,z56L/2,t). Formally these boundary conditions mea
that there is no viscosity and relaxation occurs instan
neously at the surfaces. Although these boundary condit
appear different from those used in the discrete model, t
provide the same characteristic times of the relaxat
modes. It is shown in the Appendix how these bound
conditions evolve into the ones used in Refs.@2,3#. The
boundary conditions in Eq.~11! also are the same as thos
employed in Ref.@12#.

B. Correlation function

According to Eq.~6! and ~7!, the correlation function
gmn(r' ,t) in Eq. ~4! can be expressed as

gmn~r' ,t !5
1

~2p!2E d2q'@G~q' ,zm ,zm ,t !

1G~q' ,zn ,zn ,t !22G~q' ,zn ,zm ,t !

3exp~ ır'•q'!#, ~12!

where

G~q' ,z,z8,t !5^u* ~q' ,z8,0!u~q' ,z,t !&. ~13!

To calculateG we use the method developed in Ref.@6#,
which is based on the resolution function of the operat
2¹z

2 . Mathematically this method is formulated as follow
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Taking the Fourier transform of Eq.~10! over the in-plane
coordinatesr' , multiplying by u* (q' ,z8,0), and averaging
we get the equation

]G~q' ,z,z8,t !

]t
52

B

h3q'
2 F2¹z

21
K

B
q'

4 GG~q' ,z,z8,t !,

~14!

with boundary conditions

gq'
2

B
G~q' ,z56L/2,z8,t !6¹zG~q' ,z56L/2,z8,t !50,

~15!

which follow from Eq.~11!, and the initial condition

G~q' ,z,z8,0!5G0~q' ,z,z8!. ~16!

HereG0 is the single-time correlation function found in Re
@6# @see Eq.~24! below#. We will show in the Appendix that
this formulation is equivalent to the discrete dynamic
model developed in Refs.@2# and @3#.

To solve these dynamical equations we will make the f
lowing transformation:

G1~q' ,z,z8,v!5E
0

`

dteıvtG~q' ,z,z8,t !. ~17!

Applying this to Eq.~14!, integrating by parts and taking int
account that the correlation function vanishes ast→`, we
obtain

@2¹z
22l#G1~q' ,z,z8,v!5

h3q'
2

B
G0~q' ,z,z8!, ~18!

where

l~q' ,v!5ı
vh3q'

2

B
2

K

B
q'

4 . ~19!

The solution to this equation can be expressed in terms o
resolution function

Rl~z,z8!5@2¹z
22l#21~z,z8!, ~20!

where the domain of the operator2¹z
2 are functions satisfy-

ing the boundary conditions~11!.
Here we will just present an expression for the resolut

function ~analytical details of the derivation can be found
Ref. @6#!:

R̃l̃~ z̃,z̃8!5
1

2v@~v1w!22~v2w!2e22v#
$~v1w!2e2vuz̃2 z̃8u

12~v22w2!2e2v cosh~vuz̃1 z̃8u!

1~v2w!2e22v1vuz̃2 z̃8u%, ~21!

wherev andw defined as

v5A2l̃,
l

-

he

n

w5
gq̃'

2

BL
, ~22!

where the tilde denotes dimensionless variables scaled
respect toL ~for example,q̃'5Lq' , r̃'5r' /L, z̃5z/L),
and R̃ is defined as

Rl~z,z8!5LR̃L2l~z/L,z8/L !. ~23!

Note that the single-time correlation function can be e
pressed in terms of the resolution function as@6#

G0~q' ,z,z8!5
kBT

B
Rl(q',0)~z,z8!. ~24!

The solution to Eq.~18! is now given by

G1~q' ,z,z8,v!5
h3q'

2 kBT

B2
~Rl(q' ,v)•Rl(q',0)!~z,z8!.

~25!

and the full correlation function is

G~q' ,z,z8,v!5G1~q' ,z,z8,v!1G1~q' ,z,z8,2v!,
~26!

where we have used time-reversal symmetry. The produc
the right-hand side of Eq.~25! can be calculated using th
first formula for resolution functions of self-adjoint operato
@22#

~Rm•Rn!~z,z8!5
1

m2n
@Rm~z,z8!2Rn~z,z8!#. ~27!

Then one finally obtains

G~q' ,z,z8,v!5
2kBT

vB
Im Rl(q' ,v)~z,z8!. ~28!

The displacement-displacement correlation function in
real space and time representation is obtained from the F
rier transform

^u~0,z8,0!u~r' ,z,t !&

5
1

~2p!3E dvd2q'e2ıvt1ıq'•r'G~q' ,z,z8,v!.

~29!

The integration overq' is normally cut off in the short and
long wavelength limits by the intermolecular distancea and
in-plane size of the systemL, respectively. However, for
x-ray experiments the cutoffL is equal to the in-plane reso
lution length, which is normally much less than the in-pla
size of the system@8,9#. It is also important to use a cutoff in
the z direction @9#, putting uz2z8u5d/4 for m5n, which
accounts for layer smearing.

C. Eigenmodes and their characteristic times

The singularities ofR as a complex function ofv have
crucial physical significance. According to Eq.~20!, the sin-
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gularities ofR correspond to values ofl(q' ,v) which are
eigenvalues of the operator2¹z

2 . Since this operator with
the given boundary conditions is self-adjoint, its eigenvalu
must be real. Hence, according to Eq.~19!, the frequenciesv
corresponding to these singularities ofR must be imaginary.
From the definition~17!, the functionG1 is regular in the
region Imv.0, and therefore each singular value ofv can
be written as2ı/t. Evaluating the Fourier transform overv
in Eq. ~29!, these singularities yield contributions with tim
dependence exp@2utu/t#, showing that the set oft ’s are the
relaxation times of the modes.

In a case of an infinite system one would obtain a c
tinuous spectrum, with relaxation timest(qz) being continu-
ous functions of wave numberqz in the z direction. Finite-
ness of the system in thez direction leads to quantization an
as a result produces a discrete spectrum.

To calculate the characteristic times, one needs to find
roots of the denominator in Eq.~21!. The denominator is
zero if

tanh~v !52
2vw

v21w2
. ~30!

Expressingv5ıwZ, this becomes

tan~wZ!5
2Z

Z221
. ~31!

The singular values ofv define via Eq.~22! the singular
values ofl̃, which in turn define via Eq.~19! the correspond-
ing singular values ofv. The characteristic times are ther
fore found to be

tm5
Bh3

q'
2 @g2Zm

2 1KB#
, ~32!

whereZm are the roots of Eq.~31!, which will be ordered as
Z1,Z2,Z3,••• . For m odd ~even!, these correspond to
symmetric~antisymmetric! modes@2,12,23#.

Figure 1 illustrates the graphical solution of Eq.~31!. The
solid curve corresponds to tan(wZ) and is plotted forw
50.5. The intersections of the curves show the first th
roots of Eq.~31!.

The first root can be found easily forw!1. It is useful to
rewrite Eq.~31! as

~Z221!sin~wZ!22Z cos~wZ!50. ~33!

Expanding this equation in powers ofw,

221~Z1
221!w1Z1

2w22
1

6
~Z1

221!Z1
2w31O~w4!50,

~34!

leads to

Z1
2'

2

w
2

1

3
5

2B

gLq'
2

2
1

3
, ~35!

which in turn yields
s

-

e

e

t1'h3F2g

L
1S 12

g2

3KBDKq'
2 G21

. ~36!

This expression is valid only forq'
2 !B/gL. For q'50 this

agrees with the result of Poniewierskiet al. @2#:

t15
h3L

2g
. ~37!

Note that, in this range ofq' , t1 decreases withq' if g2

,3KB and increases ifg2.3KB. A more detailed consid-
eration~see also the results of numerical calculation belo!
shows that forq'50 only the first relaxation time is non
zero, while all the others vanish.

Note that the roots of Eq.~31! with large numbersm and
nonzerow are approximatelyZm5pm. Therefore, for large
m andq'Þ0 we have

tm'
Bh3

q'
2 ~g2p2m21KB!

. ~38!

Figure 2 shows the first few characteristic times versusq' .
As noted above, only the first relaxation timet1 ~denotedt0
in Refs. @2,3#! remains nonzero asq'→0. The behavior of
the relaxation times in Fig. 2 is identical to that obtained
more involved calculations in Ref.@2#.

The correlation functiongmn(r' ,t), which determines the
scattering intensity@see Eq.~4!#, can be obtained by taking
the inverse Fourier transform overv andq' , see Eq.~29!.
We shall present results forgmn(r' ,t) in the following sec-
tion, after generalizing the theory to Cr-B films.

IV. Cr- B FILMS

A. Elastic energy of a hexagonal crystal

To account for the crystal structure of the Cr-B phase, it is
instructive to consider deformations and the elastic ene
associated with them. Deformations of 3D crystals are
scribed by the strain tensor

FIG. 1. The left- and right-hand sides of Eq.~31!. The solid line
corresponds to tan(wZ) and is plotted forw50.5. It is seen that
roots with large indices are close to zeros of tan(wZ).
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ui j 5
1

2
~¹ jui1¹ iuj !, ~39!

whereu is the displacement vector. The elastic energyF for
solids is quadratic in the symmetrized strains

F5
1

2E d3rK i j lmui j ulm . ~40!

The elastic-constant tensorKi jlm depends on the symmetr
of the system. For a uniaxial system with symmetry a
alongz we have@14,20#

Funiaxial5
1

2E d3r @C11~uxx
2 1uyy

2 !12C12uxxuyy

12~C112C12!uxy
2 1C33uzz

2 1C44~uyz
2 1uxz

2 !

12C13~uxx1uyy!uzz#. ~41!

Here the elastic-constant tensor has the form

Ki jlm5C33aiajalam1
1

2
~C112C12!~d i l

'd jm
' 1d j l

'd im
' !

1C12d i j
'd lm

' 1
1

4
C44~aiald jm

' 1ajald im
' 1aiamd j l

'

1ajamd i l
'!1C13~aiajd lm

' 1alamd i j
'!. ~42!

In these equations, the quantitya takes its conventiona
meaning of a unit vector along the axis of symmetry, and

d i j
'5d i j 2aiaj .

In our system of coordinatesai5d iz . The stress tensor ca
now be expressed as

s i j 5
dF

dui j
5Ki jlmulm , ~43!

FIG. 2. Four relaxation timestm , m51,2,3,4 vs in-plane wave
number for a five-layer film with the parameters:d52.8
31029 m, K510211 N, B52.53106 N/m2, g5331022 N/m,
h350.1 kg/s/m.
s

with Ki jlm given by Eq.~42!.
A general approach to deriving dynamical equations

solids is formulated in Ref.@14#. For nondissipative systems
these equations describe a balance between elastic force
inertia:

r0

]2ui

]t2
5¹ js i j . ~44!

If the system is viscous,s i j should be replaced bys i j

1s i j8 , where the tensors i j8 accounts for viscous forces an
can be expressed through a dissipation functionR as

s i j8 5
dR

dv i j
, ~45!

with

v i j 5
]ui j

]t
. ~46!

The dissipation functionR is quadratic inv i j , has the same
symmetry properties as the elastic energy, and can be wr
by analogy with Eq.~42! as

R5
1

2E d3rh i j lmv i j v lm , ~47!

with the viscosity tensor given by

h i j lm5h1aiajalam1h2~d i l
'd jm

' 1d j l
'd im

' !1~h42h2!d i j
'd lm

'

1h3~aiald jm
' 1ajald im

' 1aiamd j l
'1ajamd i l

'!

1h5~aiajd lm
' 1alamd i j

'!. ~48!

The coefficients here are chosen to correspond to the form
the viscous tensor in a smectic liquid crystal. Note, howev
that the values of the viscosity coefficientshk can differ
from those for a liquid smectic phase.

The dynamical equation accounting for the dissipat
forces is now given by

r0

]2ui

]t2
5FKi jlm1h i j lm

]

]t G¹ julm . ~49!

B. Easy-shear approximation

As seen from Eq.~49!, in general there is a set of thre
coupled differential equations that characterize dynamics
small deformations of a crystal. Here we discuss a simplifi
version which, on one hand, is similar to the description
the Sm-A phase in Sec. III and, on the other hand, takes i
account the crystalline structure of the Cr-B phase.

In fact, although the crystalline phase has a finite sh
modulusC44, it is abnormally small. The ratioC44/C11 is
reported to be 1024 @24,25#. Since C44 is very small, the
conventional analysis of bending@14#, which ignores shear
is not valid. Here we consider the approximation where
in-plane deformations are neglected, while instead shear
formations are well developed, which is termed the ea
shear approximation. Mathematically, this approximati
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corresponds to assuming that the displacementu can be ex-
pressed as

uj~r !5d jzu~x,y,z!. ~50!

The corresponding strain tensor elements are

uxz5
1

2

]u

]x
,

uyz5
1

2

]u

]y
,

~51!

uzz5
]u

]z
,

uxx5uyy5uxy50.

Using these elements in Eq.~41!, the latter becomes

Funiax5
1

2E d3r FC33~¹zu!21
1

4
C44~¹'u!2G . ~52!

It is seen that C33 corresponds to the smectic compressibil
coefficientB, and henceforth we will denote it asB instead
of C33, keeping in mind that its value can differ from that fo
a Sm-A phase. The shear elastic coefficient C44 is finite but
small, so it is justified keeping the next-order term with r
spect to in-plane derivatives, which is a dominant term in
liquid smectic phase. Therefore, we end up with the ela
energy:

F5
1

2E d3r FB~¹zu!21K~D'u!21
1

4
C44~¹'u!2G .

~53!

A crucial consequence of shear elastic deformations is
they produce a bulk term proportional to (¹'u)2, which is
forbidden in smectic phases where the layers slide fre
The absence of such a term leads to the Landau-Peierl
stability of bulk smectic phases. Any finiteC44 makes the
mean-square fluctuations converge independently of the
of the system.

To use this approximation we should also include visco
forces. As we did earlier, we neglect compressibility by
suming ¹•v50. The componentsvx and vy are equal to
zero, due to Eq.~50!. Hence, neglecting the compressibilit
we also havevzz50. Therefore, the only components givin
contributions to the viscous forces arevzx andvzy . The dis-
sipation function in terms ofvz is

R5
1

2E d3rh3~¹'vz!
2. ~54!

The elastic and viscous forces acting in thez direction can be
expressed as derivatives ofF andR with respect tou andvz ,
respectively. The dynamical equation~49! now reduces to
@14#

r0

]vz

]t
52

dF

du
2

dR

dvz
. ~55!
-
e
ic

at

y.
in-

ize

s
-

Using Eqs.~53! and ~54!, this becomes

r0

]2u~r ,t !

]t2
5Fh3

]

]t
D'1B¹z

21
1

4
C44D'2KD'

2 Gu~r ,t !.

~56!

Taking the Fourier transform overr' , we get

r0

]2u~q' ,z,t !

]t2
5F2h3q'

2 ]

]t
1B¹z

22
1

4
C44q'

2

2Kq'
4 Gu~q' ,z,t !. ~57!

As shown in Refs.@2,3# ~see also Refs.@21,26# for discussion
of the characteristic times!, the inertial term in the case of
smectic phase is usually negligible on the time scales of
terest. To check the validity of this approximation in th
present case, we first estimate the characteristic time
vided by the balance of viscous and elastic forces:

t5h3F1

4
C441Kq'

2 G21

. ~58!

The ratio of inertia to the elastic force is then given by

r0K

h3
2 S 11

C44

4Kq'
2 D 2

. ~59!

We recall that the prefactorr0K/h3
2 is a small parameter o

order 102621025. Therefore the inertial term is negligibl
when the following criterion is satisfied:

r0C44
2

16Kh3
2q'

4
!1. ~60!

Taking C445105 N/m2, K510211 N, h351021 kg/m/s, r0
5103 kg/m3, Eq. ~60! givesq'@1.63106 m21. Hence, for
smallerq' one has to keep the inertial term in the dynamic
equation, which means that the slow and fast modes ca
be considered separately for such small values ofq' . In the
following we derive the displacement-displacement corre
tion function taking into account the inertial term. We rec
that, for very thin smectic films fluctuating conformally, th
inertial term is not negligible due to the surface tension,
mentioned in Ref.@2#. This is also true in the case of th
Cr-B film. The criterion~60! does not involve the film thick-
ness and thus provides a further reason for taking the ine
term into account.

C. Correlation function for a Cr- B film

The displacement-displacement correlation function is
solution to the equation
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r0

]2G~q' ,z,z8,t !

]t2
52h3q'

2 ]G~q' ,z,z8,t !

]t
2BF2¹z

2

1
C44

4B
q'

2 1
K

B
q'

4 GG~q' ,z,z8,t !,

~61!

with the same boundary conditions as in Eq.~15! and initial
condition ~16! as well as

]

]t
G~q' ,z,z8,t50!50. ~62!

The latter initial condition follows from the fact thatu andvz
are statistically independent~see also Ref.@3#!.

To solve this dynamical equation we make the the sa
transformation as in the case of Sm-A films in Eq. ~17!. In-
tegrating by parts leads to the equation

@2¹z
22l#G1~q' ,z,v!5S h3q'

2

B
2

ır0v

B DG0~q' ,z,z8!,

~63!

wherel is now given by

l~q' ,v!5ı
vh3q'

2

B
1

r0v2

B
2

C44

4B
q'

2 2
K

B
q'

4 . ~64!

For r050 andC4450 this is identical to the correspondin
expression~19! for the slow mode in a Sm-A film. The so-
lution of Eq. ~63! is the same as for Eq.~18!, differing only
in the expressions on the right-hand side and forl. Repeat-
ing the same arguments as in Sec. III we obtain the sa
final expression~28! for G, but with l defined by Eq.~64!.

D. Eigenmodes of the Cr-B film and their characteristic times

To analyze the relaxation times we again consider
zero points of the dominator in Eq.~21!. As in the case of a
smectic film, we setv52ı/t, v5ıwZ. The relaxation
times are now the roots of the equation

r0

1

t2
2h3q'

2 1

t
1

1

4
C44q'

2 1Kq'
4 1

g2q'
4

B
Zm

2 50. ~65!

Hence, for anyZm we now have two characteristic time
The larger one corresponds to the slow mode in the SmA
phase. The other one corresponds to the fast mode, whic
did not consider in Sec. III. Form51 and smallq' we again
can use Eq.~35!. This yields the approximation

r0

1

t1
2

2h3q'
2 1

t1
1KS 12

g2

3KBDq'
4 1S 2g

L
1

1

4
C44Dq'

2 50.

~66!

Expanding the roots of Eq.~66! in powers ofq' , we obtain

1

t1
'7ı

1

2
ALC4418g

r0L
q'1

h3

2r0
q'

2 . ~67!
e

e

e

we

Figures 3 and 4 show the inverse relaxation times of
slow and fast branches of the first two modes due toZ1 and
Z2, respectively. The values ofZ1 and Z2 have been found
numerically by solving Eq.~31!. Both real and imaginary
parts of the relaxation times are shown. The curves in Fig
confirm the behavior of the real and and imaginary pa
predicted by Eq.~67! in the region of smallq' . In contrast
to the analysis in Sec. III, the relaxation times do not rem
finite asq' vanishes, but diverge to infinity~see also Refs.
@3,12#!.

The correlation functiongmn(r' ,t), which is relevant to
x-ray scattering, can be obtained by taking the inverse F
rier transforms, see Eqs.~29! and ~12!. Figure 5 shows re-

FIG. 3. The first inverse relaxation timet1
21 vs in-plane wave

numberq' . The triangles and circles show the real part of the f
and slow branches, respectively. The dots show the imaginary
of the first relaxation time of both of the branches. These results
for a five-layer film with the parametersK510211 N, B52.5
3106 N/m2, g53.031022 N/m, h350.1 kg/s/m,C44

5105 N/m2, d52.831029 m, r05103 kg/m3.

FIG. 4. The second inverse relaxation timet2
21 vs in-plane

wave numberq' . The triangles and circles show the real part of t
fast and slow branches, respectively. The dots show the imagi
part of the second relaxation time, producing oscillations in
correlation functions. The solid line shows the second inverse
laxation time worked out using Eq.~32! for a smectic film. All
parameters are the same as for Fig. 3.
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sults of numerical calculations carried out for various
duced times (B/h3)t50,103,104 for a 50-layer Sm-A ~dots!
and Cr-B ~triangles! film with m5n525. The values of othe
parameters used are indicated in the figure caption. S
bumps in the curves in a narrow region aroundr'5L are
due to the cutoff of the integration in the long-waveleng
limit. Figure 5 shows negligible differences between the c
relation functions for the Sm-A and Cr-B films at short in-
plane distances. Significant differences occur at large
plane distances, i.e., in the long wavelength limit. The
differences are primarily due to C44 rather than inertial ef-
fects contributed byr0, since the latter do not affect the fina
state. Note the approximately linear dependence of both
Sm-A and Cr-B correlation functions on log(r') before the
cutoff takes effect, agreeing with the analyses in Refs.@3,12#.

E. High compressibility approximation

In the case of thin films that undulate conformally we c
neglect layer compressibility and assumeB to be infinitely
large. In this limit the correlation functionG does not depend
on z andz8 and the film can be considered as a 2D syste
Taking the limitB→` in Eq. ~28!, one obtains

G~q' ,v!5
2kBT

Lv
ImF S 2g

L
1

1

4
C44Dq'

2 1Kq'
4

2r0v22ıvh3q'
2 G21

. ~68!

Again, the singular points of this function define the char
teristic times. Expressingv52ı/t, we obtain the equation

r0

1

t2
2h3q'

2 1

t
1Kq'

4 1S 2g

L
1

1

4
C44Dq'

2 50, ~69!

FIG. 5. The two-time displacement-displacement correlat
function gmn(r' ,t) vs in-plane distancer' at various times
(B/h3)t50,103,104, for a 50-layer Sm-A ~dots! and Cr-B ~triangles!
film with m5n525, C445105 N/m2, andr05103 kg/m3. The fol-
lowing parameters are taken to be the same for the Sm-A and Cr-B
phases: B5109 N/m2, K510211 N, g5231022 N/m, h3

50.1 kg/s/m,d52.831029 m, kBT54.45310221 J. The short
and long wavelength cutoffs are taken to bea54310210 m and
L5231024 m, respectively.
-
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which resembles the more exact equation~66! due to Z1.
Note that Eq.~69! yields the same relaxation time for sma
q' given by Eq.~67!. Suppose the roots are denotedts and
t f , wheres and f stand for slow and fast. Note also that th
real parts of the roots of Eq.~69! are always positive and
their imaginary parts are always opposite to each other.
simplify calculating the Fourier transform overv, it is useful
to rewrite Eq.~68! as

G~q' ,v!

5
2kBT~ts1t f !

Lr0tst f~v1ı/ts!~v2ı/ts* !~v1ı/t f !~v2ı/t f* !
.

~70!

Fourier transformation yields

G~q' ,t !5
1

2pE2`

`

dve2ıvtG~q' ,v!

5
2kBT~ts1t f !tst f

Lr0
F ts

2

~ts1ts* !~ts1t f* !~ts2t f !

3e2utu/ts1
t f

2

~t f1t f* !~t f1ts* !~t f2ts!
e2utu/t fG .

~71!

The relaxation timests andt f depend on the wave numbe
q' . For sufficiently largeq' both relaxation times are rea
When ts@t f , i.e., in the limit of very largeq' , Eq. ~71!
describes relaxation with the single characteristic timets . If

q'
2 ,qc

2[r0S 8g

L
1C44D ~h3

224r0K !21, ~72!

then the roots of Eq.~69! are complex. For the same set
parameters as used for Fig. 3 this criterion yieldsq',1.3
3106m21, which fits the results of numerical calculatio
shown in Fig. 3. In this range ofq' the roots of Eq.~69! can
be written asts, f5t86ıt9 with real and positive values o
t8, t9. The value (t821t92)/t8 is the characteristic time fo
exponential decay, whilet9/(t821t92) is the frequency of
oscillations.

To show how this can affect x-ray scattering data,
calculate the time-dependent partS2 of the intensity. To
model a real experiment, we will incorporate into Eq.~4! an
instrumental resolution function used in rocking geomet
In this geometry one of the detector slits is wide open, wh
the other remains narrow with inverse widthDqx . In this
case the 2D integral in Eq.~4! is reduced to an integral ove
x with the weight function exp@2(xDqx)

2/2#. The details as
well as general consideration of the effects of an instrum
tal resolution function on the data in an arbitrary geome
can be found in Ref.@27#. We recall that for a thin uniformly

n
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undulating film the displacement-displacement correlat
function is independent of the layer numbersm andn. There-
fore, Eq.~4! becomes

S}E
2`

`

dxexpF ıqxx2
1

2
~Dqxx!22

1

2
qz

2g~x,t !G , ~73!

where the correlation functiong is calculated from

g~r' ,t !5
1

pE2p/L

2p/a

dq'q'@G~q',0!2J0~r'q'!G~q' ,t !#,

~74!

J0 denoting the zeroth-order Bessel function.
Equations~71!, ~73!, and ~74! allow one to calculate the

intensity-intensity correlation function measured in coher
x-ray experiments. Figure 6 shows the intensity-intens
correlation function for a five-layer Cr-B film at the Bragg
peak (q'50, qz52p/d). The instrumental cutoffDqx
5106 m21 corresponds to a real experiment@9#. One can
clearly see oscillatory behavior that stems from nonov
damped fluctuations with wave numbersq',qc . These os-
cillations result primarily from inertial effects due to surfa
tension rather than shear effects. In fact, essentially iden
results are obtained for a Sm-A film in this thin-film regime,
since theC44 term in Eqs.~68!, ~69!, and ~72! is negligible
compared with theg/L term in those equations, for sma
thicknessL. Thus oscillations ing should be observable fo
both Sm-A and Cr-B films which are sufficiently thin, as ha
been indicated by preliminary experiments@28#.

V. DISCUSSION AND CONCLUSIONS

In this paper, we have developed a continuous dynam
model which allows one to calculate the two-time densi
density correlation function for Sm-A as well as Cr-B films,

FIG. 6. The time-dependent partuSu2 of the two-time intensity-
intensity correlation function with an instrumental resolution fun
tion used in rocking geometry. The calculations have been car
out for a five-layer Cr-B film using Eqs.~71!, ~73!, and ~74!. The
components of the scattering vector areq'50, qz52p/d and the
inverse instrumental resolution length areDqx5106 m21 ~dots!,
Dqx5107 m21 ~triangles!. The cutoffs are the same as for Fig.
while all other parameters are the same as for Fig. 3.
n
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taking into account finite-size effects and surface tension
the case of Sm-A free-standing films, the model is identica
to that discussed in Ref.@12#. Here we show how the relax
ation times of the system result from poles of the resolut
function, written explicitly in Eq.~21!. The model yields the
same relaxation times as the discrete model@2,3#, but using a
considerably simpler analysis. As an example of the adv
tages of the continuous model, Eq.~36! predicts the growth
of the first relaxation time withq' if g2.3KB, and decrease
in the opposite case, for smallq' . This theoretical result is
difficult to achieve via numerical calculations based on
discrete model. In the limiting caseq'50, Eq.~36! provides
the same behavior of the relaxation time as measured
Priceet al. @1#.

To the best of our knowledge, this is the first time that t
dynamic correlation function has been discussed in the c
of Cr-B films. We have been shown that although the CrB
phase has a true 3D ordering, its fluctuations resemble
dom undulations of layers in the Sm-A phase. This occurs
due to an abnormally small shear elastic constant. The p
tional order does not give rise to a large bending rigid
caused by compression and stretching of the top and bo
layers, since the stresses are quenched by well-develo
shear deformations. We have developed the easy-shea
proximation, which allows us to distinguish the main fe
tures of the system using an analysis which retains the s
plicity of that applied to Sm-A films. It has been shown tha
the shear elasticity affects the relaxation times in the lo
wavelength limit. In this limit the inertial term in the dy
namical equations is important and one has to consider
slow and fast modes together. This has several effects on
relaxation times. First, the relaxation times are complex
the long wavelength limit. The real parts correspond to
laxation, while the imaginary parts produce oscillations
the correlation functions. Second, all real parts of the rel
ation times diverge asq'→0, in contrast to the results fo
smectic-A films obtained on neglecting the fast mode. Thir
in the range where the relaxation times are complex, the
parts of the slow and fast modes are equal to each ot
while their imaginary parts are opposite to each other. T
has an important consequence for x-ray scattering bec
the density-density correlation is mainly driven by lon
wavelength undulations of the layers. Figure 6 shows that
nonmonotonic behavior of the intensity-intensity correlati
function, which stems from the long wavelength undulatio
is present even if the long wavelength range is ‘‘screene
by the instrumental resolution length (qc,Dqx).

Although we have concentrated on applications to coh
ent x-ray scattering, the two-time displacement-displacem
correlation functions for the Sm-A and Cr-B phases derived
in this paper can also be used for calculating the intens
intensity correlation function in conventional dynamic ligh
scattering experiments. Both Sm-A and Cr-B phases are op
tically anisotropic. Random undulations of the layers lead
fluctuations of the director, which scatters light. A detail
analysis of the finite-size and surface effects on static li
scattering can be found in Ref.@6#!. In the case of dynamic
light-scattering we need the displacement-displacement
relation function either in the (q' ,z,z8,t) or (q' ,z,z8,v)
representations, rather than in the (r' ,z,z8,t) representation.
This significantly simplifies the analysis. Another simplific

-
d



r
ab
u

y.

an

lar

et
a

y
e

f

ed

PRE 62 709COHERENT X-RAY SCATTERING AND DYNAMICS OF . . .
tion arises from the fact that films of a few hundred laye
can be considered incompressible, because light is not
to probe the layer spacing distance. Therefore, one can
the explicit formula~71! to evaluate the scattering intensit
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APPENDIX: EQUIVALENCE TO THE DISCRETE MODEL

In this appendix we show the equivalence of the discr
model @2,3# and the continuous model developed in this p
per. The continuous model is specified by the equation@see
Eq. ~10!#

h3q'
2

B

]u~q' ,z,t !

]t
52F2¹z

21
K

B
q'

4 Gu~q' ,z,t !, ~A1!

with z varying from2L/2 to L/2, as well as by the boundar
conditions~11!. Let us try to solve this equation using th
following approximation. The range@2L/2,L/2# is split into
M11 sections of widthh5L/(M11). The boundaries o
these sections are2L/2, 2L/21h, 2L/212h, . . . . The
corresponding values ofu are denoted u05u(z5
2L/2), u15u(z52L/21h), . . . ,uM115u(z5L/2). The
solution to the differential equation~A1! is approximated by
the solution to the following set of difference equations

h3q'
2

B

]uj

]t
5

1

h2
~uj 1122uj1uj 21!2

K

B
q'

4 uj , ~A2!
o

D

n

e

e
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for j 51 . . .M , together with the boundary conditions

gq'
2

B
uM1

1

h
~uM112uM !50,

gq'
2

B
u12

1

h
~u12u0!50. ~A3!

From Eq.~A3! we can expressu0 anduM11 as

u05S 12
gq'

2

B
hDu1 , ~A4!

uM115S 12
gq'

2

B
hDuM , ~A5!

and substitute them into Eq.~A2!. This leads to

h3q'
2

B

]u1

]t
5

1

h2
~u22u1!2S K

B
q'

4 1
gq'

2

Bh Du1 ,

h3q'
2

B

]uM

]t
5

1

h2
~2uM1uM21!2S K

B
q'

4 1
gq'

2

Bh DuM .

~A6!

The other equations are the same as in Eq.~A2!. If we take
M to be the number of smectic layers andh to be the layer
spacingd, then this set of equations coincides with that us
in the discrete model@2#.
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